
C
t

A
D

a

A
R
R
A
A

K
M
S
L
A
I

1

f
s
i
c
q
w
P
p
(
m
i
m

0
d

Journal of Hazardous Materials 172 (2009) 374–384

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

haracterization of metal pollution in soils under two landuse patterns in
he Angouran region, NW Iran; a study based on multivariate data analysis

fshin Qishlaqi ∗, Farid Moore, Giti Forghani
epartment of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran

r t i c l e i n f o

rticle history:
eceived 5 February 2009
eceived in revised form 1 June 2009
ccepted 6 July 2009
vailable online 14 July 2009

eywords:
ultivariate statistics

oil pollution
anduse patterns
ngouran region

ran

a b s t r a c t

The study presents the application of selected multivariate statistical methods (multivariate analysis of
variance, discriminant analysis, principal component analysis) and geostatistical techniques to evaluate
soil pollution status in arable lands of the Angouran region, NW Iran. Two representative landuse patterns,
cropland and grassland, were selected for the purpose of this study. Seventy soil samples (35 topsoils and
35 subsoils) were collected from the two landuse types and 21 soil parameters including total element
content and physicochemical properties were also determined. Results from application of the multi-
variate analysis of variance showed that the two landuse patterns were not statistically differentiated by
subsoil variables, whereas significant differences existed between the two landuse patterns with respect
to topsoil variables. Discriminant analysis rendered seven variables (Cu, As, Cd, OM, P, K and total N) as
indicator parameters responsible for the discrimination between the two landuse types. Using the prin-
cipal component analysis (PCA), two main components (PCs) explaining 71.71% of total variance were
extracted. PC1, with a high contribution of Ni, Cr, Fe, Mn and clay content was hypothesized as lithogenic
component and PC2, with high loadings for the seven discerning variables (Cu, As, Cd, OM, P, K and
total N), was considered as an agrogenic component. Geostatistical analyses, including the calculation of

semivariogram parameters and model fitting, further supported the PCA results. PC1 was generally char-
acterized by moderate spatial dependence and long-range spatial variation (8000 m) influenced by soil
parent martial composition, while PC2 was modelled by pure nugget effect probably reflecting the influ-
ences of agrogenic activities. The findings of this study could not only expand our knowledge regarding
the soil pollution status in the study area, but would also provide decision makers with the information
to manage the agrochemical application in the arable lands to improve the sustainability and safety of

es in
intensive-farming activiti

. Introduction

Soil plays a vital role in the environment and acts like a pivot
or material and energy exchanges among the atmosphere, hydro-
phere, biosphere and lithosphere. Once pollutants are introduced
nto the soil they can be transferred from the soil to other ecosystem
ompartments such as underground water or crops and conse-
uently can affect human health through the water supply and food
eb [1]. Among numerous soil pollutants, heavy metals (Cd, Cu,

b, Zn and As) are especially dangerous due to their toxicity and
ersistence in the environment and public health concern [2,3].

Arsenic is, strictly speaking, not a heavy metal although it shares

any toxic characteristics with heavy metals and goes through sim-
lar environmental processes.) The natural concentration of heavy

etals in arable soil depends primarily on the geological parent

∗ Corresponding author. Tel.: +98 7116137591; fax: +98 7112284572.
E-mail address: qishlaqi@shirazu.ac.ir (A. Qishlaqi).
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the study area.
© 2009 Elsevier B.V. All rights reserved.

material composition [4,5]. In addition to this natural origin, some
heavy metals may be supplied to soils by human activity. In recent
decades, the natural inputs of several heavy metals in soils due
to pedogenic processes have been exceeded by human input [3].
Agricultural activity is one of the most important human inputs
of potentially hazardous metals in arable soils [6]. These activ-
ities not only contribute to the enrichment of heavy metals in
agricultural soil, but also directly affect the soil physicochemical
properties through the long-term application of either liquid or
solid manure or chemical fertilizers [7]. Since agricultural soil has
both direct and indirect influences on public health via food pro-
duction, it is of great importance to have a good knowledge of
the accumulation and the variability in space of heavy metals in
soils.
Heavy metal accumulation in soil, the distribution of these met-
als and their controlling factors are priority objectives in many
environmental assessment studies. Statistical and geostatistical
techniques can provide such knowledge and assist the interpre-
tation of soil research data.

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:qishlaqi@shirazu.ac.ir
dx.doi.org/10.1016/j.jhazmat.2009.07.024
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Selected soil properties were also determined. The TOC content
A. Qishlaqi et al. / Journal of Haz

In recent years, statistical methods (univariate or multivariate)
ave been widely applied to investigate heavy metal concentration
nd distribution in soils. This is documented by a large number
f reported studies which applied statistical methods to metal
ccumulation in soils [8–12]. These methods are also used to esti-
ate the variability of soil properties and the related controlling

actor(s), and to assess the influence of the soil management sys-
em on the soil properties. As data sets of soil research normally
ontain many objects and many features, the analysis by uni-
ariate statistical methods is complicated and usually insufficient
11]. Alternatively, the multivariate statistical methods, taking into
ccount many variables simultaneously give much more informa-
ion about the characteristics of a soil. Moreover, a multivariate
pproach usually reduces Type I errors that occur in univariate
ests [13]. Therefore, from the methodological point of view, multi-
ariate statistical methods offer more robust and better integrated
ays to study all aspects of soil quality. In spite of these advan-

ages, classical multivariate statistical approaches ignore the spatial
elationships between soil variables which include important infor-

ation. On the other hand, the concentrations of heavy metals
n soil are a spatial phenomenon [14]. Geostatistics, as a spatial
nterpretation tool, can be used to quantify the spatial dependency
features) of soil properties including heavy metal concentrations.
hese methods have been widely applied in soil surveys and other
nvironmental research programs [15–20]. Understanding the vari-
tions of soil characteristics and their controlling factors and how
oil attributes vary spatially can be helpful in the characterization
f complex relationships between soil properties, environmental
actors and contamination sources. From an environmental man-
gement point of view, these findings may be useful in achieving
better understanding of soil quality and thereby adopting appro-
riate management strategies for guaranteeing the maintenance or
ven improvement of soil quality.

The Angouran region located in the northwest of Iran is charac-
erized by widespread arable and cultivated lands. There is very
ittle information about the heavy metal pollution status in the
rable soils of this region. Although different sources may con-
ribute to the soil pollution in the Angouran region, agricultural
ctivities are so widespread that it is reasonable to hypothesize that
hese practices are the major contributor to the soil pollution in
he study area. The evaluation and differentiation of anthropogenic
nd lithogenic inputs are an important and difficult task in this area
ince soils here are naturally enriched in metals.

In order to evaluate the impacts of agronomic practices on soil
haracteristics (metal contents and physicochemical properties),
e have chosen two main landuse patterns (cropland and grass-

and) and assessed, by means of multivariate statistics, (1) whether
hese two main landuse patterns are statistically different from
ach other or not and if they are then what specific soil variables
est differentiate these from each other. Using unsupervised
ultivariate statistics (PCA) and geostatistical methods (variogram

nalysis), we also investigated the spatial variability (structure)
f the soil variables and infer (indirectly) the factors (soil parent
aterial, agricultural practices) that can promote this variability.

. Materials and methods

.1. Site description

The study area is located in Zanjan province about 90 km west
f Zanjan city and 450 km northwest of Tehran. Geologically, it
s part of the Takab mineralization zone. The Takab area is char-
cterized by several sediment-hosted mineralizations which are
sually associated with volcanic–plutonic rocks [21]. The inten-
ive volcanic (epithermal) activity and presence of carbonate rock
equences or their metamorphosed equivalents (host rocks) have
Materials 172 (2009) 374–384 375

resulted in a series of mineral deposits of which some are also
mined. The main rocks that are exposed in the outcrop are lime-
stone and marl of Miocene age and metamorphosed rock units
(marble and micaschist) of Precambrian age. Volcano-sedimentary
rocks of Oligomiocene age are also exposed to the west of the study
area.

Topographically, the region is surrounded by mountains, partic-
ularly in the northern part. The gradient of the terrain trends from
north to south gradually with elevation from 5 m (in the middle
plain) to 3500 m (in the northern mountains). The Angouran region
has a semiarid and cold climate with annual temperatures ranging
from −22 ◦C in winter to 36 ◦C in summer, with an average annual
rainfall over 350 mm.

The soils in the study area, developed predominately on Pleis-
tocene alluvial sediments, are mainly composed by loam and
gravels. Principally, the soils are shallow and calcareous with
an alkaline pH because of their calcium-carbonate rich parent
material. According to soil taxonomy [22], these soils are mainly
classified as Entisols. As a definition, they are poorly developed,
immature and shallow soils containing low organic content.

The two representative main landuse patterns in the study area
include cropland (50%) and grassland (44.5%) with an overall area
of >20 ha. The major differences between grassland and cropland
are the kind of vegetation and level of management that each land
area receives. In the study area, grassland supports native veg-
etation (Spartina pectinata) that is extensively managed through
the control of livestock rather than agronomy (cultivation) prac-
tices such as fertilization or pesticide application. In contrast, the
cropland is intensively managed using agronomy practices and
rotational cultivation of crops. According to the survey, an aver-
age of 500 kg ha−1 yr−1 of commercial fertilizers and manure are
used in the agricultural area. Wheat, alfalfa and barley are being
cultivated rotationally in the cropland.

2.2. Soil sampling and chemical analysis

Considering the uniformity of the soil samples distribution over
the study area, a total of 70 uniformly distributed samples (35 sam-
ples for both topsoils and subsoils) were collected from the two
different landuse patterns (Fig. 1). Each site was divided into a
2 × 2 km grid using topographic maps at 1:50,000 scale. At each
plot, two initial subsamples were taken at 0–20 cm (topsoils) and
20–60 cm (subsoils). These subsamples were mixed to obtain a bulk
sample that provides an estimate of the concentrations of that site.
The density of sampling was generally one sample every 2 km2

and the total area sampled was 50 km2 (12.1 km × 4.1 km). At each
sampling location, the related information such as landuse history,
vegetation and soil type were also recorded in detail.

The soil samples were dried for 7 days at 40 ◦C, sieved to less
than 2 mm in a plastic sieve and ground to fine powder using agate
and a pestle. The soil samples were then submitted for total heavy
metal concentration analysis (by ICP-OES) in an accredited Aus-
tralian laboratory (Amdel Limited’s Labs ISO 9001). Major elements
(K, Na, P, Mg, Al and Fe) were analyzed by X-ray fluorescence (XRF).
Total nitrogen was measured by Kjeldhal procedure [23]. Repli-
cated measures of internal references materials, reagent blanks and
duplicated soil samples randomly selected from the set of available
samples were used to assess contamination and precision during
analysis. The quality control gave good precision (SD < 10%).
of the soil was determined by loss on ignition at 550 ◦C in a muffle
furnace [24]. Soil pH was determined by mixing soil and distilled
water in a 1:2.5 (g:ml) ratio and shaking for 15 min before mea-
suring pH. Clay content was also determined using the hydrometer
method after pretreatment with Na-hexametaphosphate [25].
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Fig. 1. Map of the study area showing samplin

.3. Statistical and geostatistical analysis

Descriptive statistics including mean, maximum, minimum,
edian and coefficient of variation (CV) were calculated for topsoil

nd subsoil samples from the two sampling locations. We adopt the
V as an indicator of the variability of soil properties.

The distribution of the data was tested for normality by
olmogorov–Smirnov (K–S) test. When statistical distribution was
ot normal, the variables were transformed by applying neperian

ogarithms to obtain a normal distribution. Pearson correlation
atrix was also used to identify the relationship between soil vari-

bles.

.3.1. Multivariate analysis of variance (MANOVA)
To assess significant differences in total metal concentration and

oil physicochemical properties among top/sub soil samples from
he two sampling sites, MANOVA was used. In the MANOVA, the
verall mean of the groups (partitioned to a series of sum of squares)

s compared by Test Statistics (Wilks’ Lambda, Lawley-Hotelling,
illai’s Trace and Roy’s Largest Root) and between-group variance

s expressed as F-statistics.
Once the MANOVA tests established that at least one of the vari-

bles was different between landuse types, means for individual
oil properties were subjected to discriminant analysis (as post-hoc
nivariate test).

.3.2. Discriminant analysis (DA)
The MANOVA technique gives the overall test of the equality of

ean vectors of several groups but it does not provide information
s to which variables are responsible for the differences in mean.
or this purpose, discriminant analysis was performed on each of
he mean of variables individually to add support to the results of

ANOVA.
DA is a method of analyzing dependence that is a special case

f canonical correlation. In this study, the DA was first used to
eveal whether the two sampling sites (landuse patterns) dif-
er significantly in terms of heavy metal concentrations and soil
roperties. After elucidating the differences between the two

ites, the DA determines the variables that discriminate between
he two sites.

If many measures (variables) are included in the model, stepwise
A (in the modes of standard, forward and backward) can be used

o determine the variables that discriminate between the groups.
ts, landuse patterns and geological rock units.

2.3.3. Principal component analysis (PCA)
Principle component analysis is a technique widely used for

reducing the dimensions of multivariate problems. As a non-
parametric method of classification, it makes no assumptions about
the underlying statistical data distribution. It reduces the dimen-
sionality of the data set by explaining the correlation amongst a
large number of variables in terms of a smaller number of under-
lying factors (principal components or PCs) without losing much
information [26].

All statistical treatments mentioned above were performed
using SPSS for Windows (release ver.11 Inc., Chicago, IL).

2.4. Geostatistical analysis

Geostatistics is based on the theory of regionalized variable [27]
which is distributed in space and shows spatial autocorrelation such
that samples close together in space are more alike than those that
are further apart [20]. In this study, the results of PCA were used
to calculate the autocorrelation value and to produce a minimum
unbiased variance estimate. This variance is calculated as a function
of a semivariogram, which is a measure of the dissimilarity between
a pair of regionalized variables (Z(xi), Z(xi + h)) with respect to the
spatial separation, h:

�(h) = 1
2n(h)

n(h)∑

i=1

[Z(xi) − Z(xi + h)]2

where n(h) is the number of pairs of differences with the distance h.
No anisotropy was evident in the directional semivariograms of any
of the soil properties, thus isotropic semivariogram models (spher-
ical, exponential, Gaussian, linear, or pure nugget effect) were fitted
to the data. Each of the models can be described on three param-
eters; nugget variance (the y-intercept of the model, C0), sill (the
model asymptote, C0 + C) and range (the distance over which spa-
tial dependence is apparent, A0) [6]. Selection of semivariogram
models was made based on the regression coefficient of determi-
nation (R2), residual sum squares (RSS) and the goodness-of-fit (gof)

index [28]. It should be noted that in the variography of the original
data, we restricted semivariance estimation to half the maximum
lag distance to better estimate the semivariogram within the spa-
tial correlation range (minimum lag distance was 1000 m and each
lag distance had at least 200 pairs of points in this study).
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Table 1
Descriptive statistics of element concentration of soil and some soil properties.

Subgroup Descriptive
statistics

Mg Na K Al Cr Ni Cd Cu As Zn Pb Clay
content
(%)

OM (%) [H]+a

(mol)
P N

Cropland (topsoil)

Geometric
mean

3.24 4330 12605 51225 33.46 36.23 3.61 884.6 241 2501 2862 223.89 5.18 8.1 × 10−9 25527 14003

Arithmetic
mean

3.49 4410 17967 51467 33.95 36.65 5.3 1100 649 1403 1175 220.14 4.79 6.4 × 10−8 3165.7 19646

Min 2.2 3257 923 42315 22.16 33.19 1.19 125 45 385 2143 15 1.2 6.1 × 10−8 928 275
Max 5.22 6259 25970 57290 42.15 52.16 10.13 3250 1100 4256 3525 3342 22.41 7.5 × 10−10 72935 57400
Median 3.25 4337 19637 53083 34.37 36.76 4.46 1598.5 323.5 3335.5 2854.5 40 11.3 4.4 × 10−9 52109 33875
SD 0.86 893 8981 5060 5.73 6.14 2.66 1587.9 420.6 1186.8 437.31 853.04 4.45 0.68 25584 18707
CV × 100 0.25 0.2 0.51 0.09 0.16 0.15 0.6 0.75 0.92 0.4 0.15 3.2 0.58 0.08 0.57 0.62
K–S test 0.14 0.11 0.19 0.17 0.21 0.22 0.16 0.02 0.03 0.19 0.01 0.52 0.14 0.17 0.27 0.13

Cropland (subsoil)

Geometric
mean

4.08 3815 299 51455 31.24 34.97 0.32 114.37 28.66 1062.2 2358 33.24 0.95 1.4 × 10−8 185.81 427.94

Arithmetic
mean

4.53 3753 283 5112 29.41 30.31 0.32 110.25 27.21 969.08 2337 30.58 0.91 1.7 × 10−8 238.83 430.16

Min 1.232 2123 217 37960 26 22.12 0.23 95 22.3 700 1754 17 0.11 2.5 × 10−7 128 275
Max 12.3 5354 473 69750 40.32 56.9 0.45 152 35.96 1752 3740 65 5 5.1 × 10−10 275 525
Median 4.54 3838 320 52450 33.15 34.2 0.32 101 29.53 1125 2210 37 1.1 5.1 × 10−8 200 423
SD 4.21 1143 79 10679 4.31 9.06 0.09 23.49 4.46 307.54 629.72 15.3 1.26 0.91 54.23 74.2
CV × 100 0.21 0.29 0.25 0.2 0.13 0.25 0.27 0.2 0.15 0.27 0.25 0.19 0.13 0.11 0.27 0.17
K–S test 0.28 0.14 0.18 0.22 0.15 0.32 0.25 0.27 0.17 0.21 0.22 0.11 0.23 0.23 0.14 0.21

Grassland (topsoil)

Geometric
Mean

18.83 3666 698 47588 18.11 22.38 0.959 23.04 12.1 306.86 546.07 26.83 3.72 7.5 × 10−9 146 189.83

Arithmetic
mean

12.2 3710 676 41178 19.8 22.59 1.1 22.19 9.94 288.41 596.16 25.27 3.3 1.6 × 10−8 138 173.75

Min 13.61 2750 500 29730 13.4 15.51 0.68 19.62 7.9 225 475 10 2.2 7.7 × 10−8 115 151
Max 25.8 5740 975 57540 25.7 30.42 1.3 29.31 17.3 425 925 72 6.31 4.7 × 10−10 230 220
Median 20.31 3642 720 48185 18.11 22.75 1.03 23.32 13.1 300 533.51 34 2.2 7.1 × 10−9 142.5 197.53
SD 4.24 1112 145 11273 5.06 6.19 0.22 3.23 3.34 82.62 177.91 17.31 1.82 0.82 44.59 23.22
CV × 100 0.21 0.27 0.2 0.25 0.27 0.26 0.23 0.13 0.26 0.26 0.28 0.27 0.19 0.1 0.27 0.12
K–S test 0.16 0.21 0.24 0.25 0.21 0.18 0.19 0.16 0.16 0.21 0.38 0.1 0.15 0.16 0.26 0.19

Grassland (subsoil)

Geometric
mean

22.17 1754 854 41995 41.46 23.88 0.63 174.11 140.78 366.08 920.43 32.81 0.68 2.1 × 10−9 81.51 197.63

Arithmetic
mean

20.01 1856 758 42685 40.86 20.75 0.57 167.21 68.29 380.16 723.33 30.15 1.12 7.9 × 10−9 81.92 197.5

Min 17.5 1150 710 24750 35.81 17.32 0.32 110 125 220 747 15 0.16 6.1 × 10−8 59.6 170
Max 25.5 2275 1250 61150 47.9 39.91 0.98 200 154 500 1000 72 2.91 7.9 × 10−10 110 231
Median 22.85 1951 746 43855 41.75 21.4 0.62 174 146 367.51 922.5 38 1.11 4.4 × 10−9 80.75 194
SD 2.71 472 219 12607 4.22 7.86 0.22 42.81 12.1 101.92 82.21 19.21 0.69 0.68 17.8 23.84
CV × 100 0.12 0.26 0.25 0.28 0.1 0.31 0.34 0.26 0.08 0.28 0.09 0.49 0.13 0.08 0.21 0.11
K–S test 0.14 0.26 0.3 0.16 0.16 0.27 0.19 0.27 0.26 0.2 0.2 0.1 0.11 0.17 0.15 0.19

All values in mg kg−1 unless otherwise mentioned.
a pH = −log[H]+.
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Table 2b
Results of multivariate tests (MANOVA) for topsoil samples of the two landuse types.

Test Value F Hypothesis d.f. Error d.f. Sig.

Pillai’s Trace 0.989 191.374 16.000 34.000 0.000
Wilks’ Lambda 0.011 191.374a 16.000 34.000 0.000
Hotelling’s Trace 90.058 191.374 16.000 34.000 0.000
Roy’s Largest Root 90.058 191.374b 16.000 34.000 0.000

It is evident that for each variable under investigation, a high degree
of between-groups variations exist (canonical correlations have val-
ues between 0.663 and 0.983), whereas there is a lower degree of
within-group variations (Wilks’ Lambda statistics range from 0.002
78 A. Qishlaqi et al. / Journal of Haz

All the geostatistical analyses were carried out with GS+ (Version
.1a Demo).

. Results and discussion

Descriptive statistics for element and physicochemical char-
cteristics of the analyzed soils are summarized in Table 1. The
pplication of the K–S test confirmed that most variables are nor-
ally distributed with the exception of Cu, Pb and As in the cropland

opsoil samples. For non-normal variables, a neperian transforma-
ion was used to get a more symmetric (normal) distribution.

The mean concentrations of heavy metals in the cropland top-
oils were higher than those in grassland topsoils. Physicochemical
roperties of the cropland topsoil were generally more variable
han those of the grassland topsoil as well. Soil pH, as an excep-
ion, varied narrowly from 8.00 (for cropland topsoil) to 7.83 (for
rassland topsoil), indicating a moderately alkaline condition.

Comparing the mean values of heavy metal concentration in the
ropland topsoil of the Angouran region with the values available
rom literature [29,30], Fe and Mn exhibit lower contents than the

ean values established for arable soils worldwide, Ni and Cr are
oughly comparable with mean global values, while Cu, Cd, Pb, Zn
nd As are significantly higher than average world values.

.1. Multivariate analysis of variance

A priori assumption advanced in this study is that cropland and
rassland sites are statistically different from each other in terms of
oil attributes (i.e. soil attributes were expected to be influenced by
anduse types). To test whether mean values of soil attributes (ele-

ent concentrations and soil properties) differ between the defined
roups (two sites), MANOVA was applied to the data set. For sta-
istical analysis, data from the upper (topsoil) and underlying layer
subsoil) were treated separately. Table 2a brings out the results
f the MANOVA for the subsoils. According to the results, the two
ites (cropland and grassland) are not significantly different from
ach other with respect to all variables (p > 0.01, F values = 0.448).
n spite of the high concentration levels, the coefficient of varia-
ion values varied from 8% (for As in grassland subsoil) to 29% (for
a in cropland subsoil), indicating slight variations for the subsoil
ariables. Therefore, the spatial distributions of these variables are
emarkably similar over a large area. As one can see in Table 1, for all
he subsoil variables the median is very close to the arithmetic and
eometric mean, indicating a similar statistical distribution. The
elatively small variability and the lack of significant differences
etween the two sites suggest that subsoils of the two sites were
erived from a single or uniform parent material (geologic sub-
trate). Since no statistical significance was found between the two
anduse patterns (sites) in terms of subsoil variables, the statistical
nalyses were restricted to the topsoil variables.
The results obtained from application of the ANOVA method
or topsoil samples (Table 2b) show that there are strong differ-
nces between the two sites with regard to all determined variables
t level p < 0.01. The F values, as the ratio of the between-groups

able 2a
esults of multivariate tests (MANOVA) for subsoil samples of the two landuse types.

est Value F Hypothesis d.f. Error d.f. Sig.

illai’s Trace 0.956 0.448 48.000 1.000 0.858
ilks’ Lambda 0.044 0.448a 48.000 1.000 0.858

otelling’s Trace 21.499 0.448 48.000 1.000 0.858
oy’s Largest Root 21.499 0.448b 48.000 1.000 0.858

a Exact statistic.
b The statistic is an upper bound on F that yields a lower bound on the significance

evel.
a Exact statistic.
b The statistic is an upper bound on F that yields a lower bound on the significance

level.

variance to within-group variance are relatively high (191.374),
indicating significant differences between the two landuse pat-
terns. In cropland topsoil, for some variables (As, Cu, Cd, OM, N,
K and P) the CVs exceed 50%, representing considerable variabil-
ity. This indicates that some soil attributes are being affected by
anthropogenic (agrogenic) activities rather than by geogenic (par-
ent material) factors. Based on the MANOVA results, the mean
values of As, Cu, Cd, N, K, P, OM and Zn in cropland topsoil are
remarkably larger than those found in grassland (Fig. 2). The fact
that these elements are most strongly enriched in the cultivated
soils suggests that these soils have been subjected to a high input
of anthropogenic metals most likely related to the application of
agrochemicals used to improve production and quality.

3.2. Discriminant analysis

The results of the MANOVA are statistically too general, i.e. they
only tell us whether or not two or more groups are significantly
different from each other with respect to the means of all vari-
ables. To determine which variables contribute to the separation
between groups, discriminant analysis was used. In order to ensure
the results of the MANOVA evaluation we carried out DA on each of
the variables determined in the topsoil samples. Since the objective
of the execution of discriminant analysis was to determine whether
the two sites differ significantly in terms of soil attributes, the two
sites were entered as the grouping variables and the soil attributes
were entered as the independent variables.

The discriminant analysis results are presented in Table 3. The
obtained results clearly indicate the two landuse patterns (sites)
exhibit different levels of soil variables (parameters) in the top layer.
Fig. 2. Box plot showing difference between landuses in terms of seven discerning
variables in topsoil samples.
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Table 3
Results of discriminant analysis for topsoil variables of the two landuse types.

Variable Canonical correlation Wilks’ Lambda statistic d.f. Sign. Percentage of grouped cases
correctly classified

pH 0.752 0.108 1 0 72
OM 0.871 0.01 1 0 99
Clay content 0.666 0.287 1 0 75
Pb 0.785 0.086 1 0 82
Zn 0.78 0.538 1 0 85
As 0.852 0.127 1 0 92
Cu 0.925 0.378 1 0 90
Cd 0.902 0.203 1 0 100
Ni 0.741 0.211 1 0 79
Cr 0.75 0.238 1 0 72
Al 0.726 0.229 1 0 72
K 0.854 0.184 1 0 95
Na 0.663 0.187 1 0 95
Mg 0.701 0.002 1 0 98
Fe 0.821 0.137 1 0 70
Mn 0.742 0.12 1 0 78
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0.983 0.174
0.902 0.103

he level of significance was set at p < 0.01 (two-tailed).

o 0.538). The statistically significant results also show a very high
ercentage of correct classification, ranging from 72% to 100%.

To discover in detail which variable(s) make(s) the highest con-
ribution to the discrimination between the two sites, stepwise
iscriminant analysis modes were performed on the original data
Table 4). The standard DA mode constructed DFs including all

ariables. In forward mode stepwise mode, variables are included
tep-by-step beginning with the more significant until no signifi-
ant changes are obtained; in backward stepwise mode, variables
re removed step-by-step with the less significant until no signifi-
ant changes are obtained.

able 4
esults of the stepwise discriminant analysis for all data measurements in topsoils
nd classification matrix showing percentage of correctly cases for the two landuse
ypes.

arameters Standard mode Forward/backward mode

Cropland Grassland Cropland Grassland

H 0.280 0.339
M (%) 0.871 0.730 0.731 0.621
lay content (%) 0.123 0.676
b 0.989 0.227
n 0.664 0.926
s 0.736 0.623 0.531 0.712
u 1.721 0.932 1.521 0.802
d 0.636 0.287 1.745 0.985
i 0.261 0.632
r 1.254 1.023
l 1.2127 1.036

1.23 1.14 0.977 0.873
a 0.308 0.452
g 0.492 0.412

e 0.231 0.425
n 0.368 0.450

1.17 0.925 1.27 0.975
0.923 0.714 1.10 0.727

lassification matrix %Correct
Standard mode

Cropland 96.61
Grassland 92.33
Total 94.47

Forward/backward mode
Cropland 99.11
Grassland 97.24
Total 98.17
1 0 97
1 0 98

The standard mode yielded the corresponding correlation
matrixes (CMs) assigning 94.47% correctly using 18 discriminant
variables (Table 4). The forward/backward stepwise modes yielded
the corresponding CMs, assigning more than 97% of cases correctly
using only seven discriminant variables. Therefore, based on the
results of the discriminant analysis, there are significant differences
between the two sampling sites which are expressed in terms of
seven discriminating variables (As, Cd, Cu, K, N, P and OM). As seen,
some metals with high total concentrations (such as Pb, Zn, Fe and
Mn) did not contribute to the discrimination between the two lan-
duse types, as the topsoil concentration of these metals is very close
to their corresponding subsoil concentration. This indicates a close
relation between the horizons and consequently the same origin for
these metals in both horizons. In contrast, the separation of topsoil
and subsoil element concentration (as for As, Cd, K and Cu) is caused
most probably by the fact that the prevailing origin of these metals
in the topsoil is different from the principal origin in the subsoil. It
is noteworthy that these discerning variables are also known to be
associated with agronomic practices (manure application and fer-
tilization) and as previously mentioned, the mean concentrations
of the variables were considerably larger in cropland.

The Pearson correlation matrix (PCM) presented in Table 5
showed the high interdependence between particular variables. For
instance, some metals such as Ni, Cr, Fe, Mn or Zn showed a higher
correlation with soil clay content. This result suggests that adsorp-
tion and retention of these elements in the cropland soils are mainly
influenced by clay minerals. This is in agreement with the results
obtained in studies conducted worldwide which have shown that
the fine grained soils fraction exhibit a higher tendency for metal
adsorption than the coarse grain fraction. On the other hand, some
other elements such as As, Cu and Cd exhibited a significant rela-
tionship with soil organic matter probably as a consequence of their
different (external) sources. It is well-established in the literature
that organic matter content plays a fundamental role in the control
of metal sorption by soils [31,32]. Organic matter, both in the dis-
solved and solid states, has a large specific surface area and elevated
negative charge, thus attracting metals. According to McBride [33],
most transition metals in soils tend to form stable complex with
organic ligands. Similar results have also been reported by other

authors in agricultural soils (e.g. Rodriguez et al. [5]).

Other soil property (soil pH) did not present any obvious cor-
relation with heavy metal concentrations. This could be due to the
narrow internal of pH values in the study area confirmed by the low
standard deviation of this parameter.
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Table 5
Pearson correlation coefficient (r) between some element concentrations and soil properties.

N P pH OM Clay content Pb Zn As Cu Cd Ni Cr Al K

N 0.726* −0.034 0.666* −0.057 0.436 0.482 0.640* 0.996** 0.991** 0.041 −0.050 0.136 0.747*

P 0.088 0.816** 0.097 0.657* 0.667* 0.731* 0.998** 0.960* −0.215 −0.124 −0.027 0.713*

pH 0.365 0.190 0.278 0.329 0.028 −0.125 0.060 −0.205 −0.253 0.350 0.106
OM −0.197 0.169 −0.232 0.827** 0.869** 0.994** −0.216 −0.260 0.033 0.651*

Clay Content 0.526* 0.686* −0.135 −0.060 0.051 0.868** 0.858** 0.943** 0.013
Pb 0.848** −0.036 −0.116 −0.113 0.701** 0.555* 0.611* −0.030

Zn 0.196 −0.064 0.126 0.687* 0.792* 0.669* 0.213
As 0.948** 0.846** 0.029 −0.023 0.039 0.264

Cu 0.953** 0.091 −0.057 −0.259 0.938**

Cd −0.078 −0.091 −0.241 0.862**

Ni 0.997** 0.825** 0.074
Cr 0.804** −0.302

Al −0. 257
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* Correlation is significant at the 0.05 level (two-tailed).
** Correlation is significant at the 0.01 level (two-tailed).

Inter-element relationships can also provide information on
etal sources and pathways. The 14 metals were grouped accord-

ng to correlation levels among elements. Elements in Group 1 (Ni,
r, Al, Fe, Mn, Mg, Zn and Pb) strongly correlated with each other
p < 0.01). The results indicate that these elements had the same
nput sources and similar geochemical behavior. Those in Group 2
Cu, As and Cd) displayed a positive correlation of different levels
ith each other, suggesting the possibility that a common origin

xists for these elements in the analyzed soils. It should be noted
hat Pb and Zn had moderate to strong correlations with elements of
oth groups showing that these metals may be supplied to soils by
wo possible sources. To better understand the relationships among
oil variables, principal component analysis was applied.

.3. Principal component analysis

This analysis was applied to the autoscaled data matrix and
tandardized to zero mean and unit variance, aiming at assuring
hat all variables contribute equally to the model. The components
ere also rotated using a Varimax normalized rotation [34] which
aximizes the variances of the squared normalized factor loadings

cross variables for each component. A screen test was performed to
orroborate primer results, only principal components with eigen-
alues >1 and that explain >10% of the total variance were retained
Table 6). Therefore, the most explanatory first components with

ore than 71% of the observed variance were selected. PC3 was not
aken into account as it contained no relevant information to distin-
uish the landuse patterns. The association of metals with these two
omponents can indicate the hypothetical source of these elements
lithogenic, anthropogenic or mixed).

.3.1. PC1
The largest loadings for the first component which accounts for

ore than 45% of observed variance were observed for topsoil Cr,
i, Fe, Mn, Pb and Zn (loadings greater than ±0.5 were considered).
xcept for Zn and Pb, other soil variables with high loading factors

n this component are characterized by low variability and narrow
ange (see Table 1). Rodriguez et al. [5] and Brumelis et al. [35] found
similar metal grouped (Pb, Zn, Cr, Ni, Fe and Mn) in the same factor
nd explained the results as arising from the same source. Among
he metals, Ni and Cr are ferrofamily transition elements which have
imilar geochemical behavior and are known to be added geogeni-

ally [36]. Generally, anthropic inputs of Cr and Ni in fertilizers or
anures are lower than the concentration already present in the

oil. The parent material of the study area (alluvial and colluvial
ediments), particularly that of calcareous nature, determines Cr
nd Ni contents in the soil. In natural soils, Cr and Ni are derived
K

mainly from weathering of parent material and subsequent pedoge-
nesis. In the study area these metals appear in precipitated forms in
sedimentary carbonate rocks (limestone and marl). Similar chem-
ical behavior is presented by Fe and Mn, partly in oxide form and
partly present as hydroxides which appear in precipitated forms
in the parent materials (sediments). These metals also showed
significantly positive correlations with clay content (r = 0.6–0.7),
suggesting their strong association with products of parent rock
weathering. Zn–Pb can also have a geogenic source as they form
a number of insoluble compositions (e.g. silicates, carbonates, . . .)
according to the prevailing pedogenic process [2]. Zn–Pb mineral-
ization (as ZnCO3, smithsonite and calamine ore) in the study area
may contribute to the enrichment of topsoils in these metals. The
remaining elements (Na, Mg and Al) are principally lithogenic and
as such appeared in the PC1.

The above findings were further evidenced by the Top Enrich-
ment factors (TEF), defined as the concentration ratio between the
upper layer and underlying layer. A natural pedogenic enrichment
is unlikely to produce TEF values exceeding 2, while higher values
point to an important anthropic input from the top. As expected,
all the metals positively associated with the PC1 had TEF values
lower than 2, suggesting a natural input of these metals from par-
ent rocks. Therefore, we interpret the first component as a geogenic
(lithogenic) factor because of (i) high (dominant) loading factors of
the typical lithogenic elements in this component; (ii) the large pos-
itive correlation of this group of elements with soil properties (clay
content), and (iii) low level of total metal concentrations in the top-
soil (TEF < 2). Relatively lower and negative loading factors for other
elements in the PC1 suggested other effects and also other influ-
ences on the status of elements in the soils. The elements have large
positive loadings on the second component as will be discussed
below.

3.3.2. PC2
The second component (PC2) contributes Cu, K, As, Cd, Pb, Zn,

total N, P and OM at 26.22% total variance. This component seems to
have arisen from a different source such as agrochemical products
or solid manures. Chemical or commercial (N–K–P) fertilizers are
an important source of metals entering agricultural soils, especially
Cd, Pb, Zn and K [8]. As seen, Zn and Pb have the following load-
ing factors in the first and second components indicating a mixed
source both from lithogenic and from anthropogenic inputs. High

Cu and As values can also come from metal-based agrochemicals
(especially sulfate and arsenate containing pesticides) related to
specific agricultural practices. Therefore, PC2 can be hypothesized
as an anthropogenic component with high loadings of Cu, As, Pb,
Zn, and Cd. These results are in broad agreement with other studies
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Table 6
Total variance explained and component matrix for topsoil variables.

Component Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of variance Cumulative% Total % of variance Cumulative% Total % of variance Cumulative%

1 8.189 45.497 45.497 8.189 45.497 45.497 7.900 43.887 43.887
2 4.720 26.220 71.717 4.720 26.220 71.717 3.284 18.247 62.134
3 1.743 9.683 81.400 1.743 9.683 81.400 2.891 16.062 78.197
4 1.241 6.895 88.295 1.241 6.895 88.295 1.818 10.098 88.295
5 .930 5.165 93.459
6 .464 2.579 96.039
7 .253 1.405 97.444
8 .193 1.074 98.517
9 .152 .844 99.361

10 .040 .223 99.584
11 .035 .192 99.777
12 .020 .109 99.886
13 .012 .066 99.952
14 .004 .025 99.977
15 .003 .018 99.995
16 .001 .003 99.998
17 .000 .001 100.000
18 8.742E−05 .000 100.000

Component matrix Rotated component matrixa

1 2 1 2

Cr .970 −.073 .971 .005
Ni .983 −.113 .973 .082
Fe .936 −.146 .964 .019
OM −.456 −.537 −.426 .621
P −.263 .668 −.273 .768
As −.415 .694 −.309 .760
Cu .358 .759 .202 .764
Mn .936 .021 .900 .100
Pb .774 .446 .929 .577
Zn .852 .425 .976 .521
Clay .893 .078 .859 .086
Al .897 −.167 .928 .028
Mg .595 .187 .631 .404
Cd −.052 .842 −.194 .882
pH .271 .306 .141 −.178
N .333 .865 −.433 .862
K .197 −.812 −.153 .875
Na .528 −.102 .658 −.116
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xtraction method: principal component analysis, rotation method: Varimax with K
a Rotation converged in five iterations.

hich report that metal concentrations significantly increased in
ertilized soils [37]. Nicholson et al. [7] also found that an impor-
ant percentage of several metals contained in agricultural soils of
ngland was due to chemical fertilizers or solid manure. Except for
b and Zn, other elements loaded in the PC2 show a higher average
opsoil concentration with TEF values ranging from 4.1 for Cd to 6.7
or Cu and As. This suggests the local surface addition of Cu, Cd and
s of agrogenic origin. In the case of Zn and Pb, TEF has a mean
alue of 1.42 (for Zn) to 1.90 (for Pb) suggesting anthropogenic and
eogenic inputs.

Among the soil properties studied here, OM showed the high-
st loading for the PC2 which to some extent represents the special
elationships of the metals to this soil property. This also indicates
hat long-term agricultural activity has increased the TOC content
f the surface layer. Similar results were observed by Huang et
l. [38], who found that long-term fertilization acts to enhance
he TOC content of agricultural lands. The strong affinity of met-
ls from anthropogenic sources to organic matter has been shown

n the literature [31,39]. Organic matter can provide a large num-
er of sorption sites facilitating metal accumulation in the top

ayer of soils. In agricultural land receiving organic matter from an
grogenic source, OM acts as the major adsorbent for the metals.
ccording to these results, the bioavailability of metals would be
normalization.

expected to be low in the topsoils analyzed. It should, however, be
stressed that under changing environmental condition, metals from
anthropogenic sources can be more easily mobilized than those
derived from parent materials, and this may be a matter of concern
due to the risks of metal transfer into food plants.

In addition to the metals, we found exceptionally high concen-
trations of nutrient elements (P, K and N) in the top layer of cropland
soils. To increase crop production, large quantities of N–P–K com-
posite fertilizers are applied. According to the survey, an average of
500 kg composite fertilizer is used per ha per year. Table 5 shows
that the nutrient elements (N–P–K) are positively correlated with
metals such as Cd and Cu which further supports our hypothe-
sis about the agrogenic source of the metals. It is interesting to
mention that the variables with high loading factors in the sec-
ond component also have a high contribution in the discrimination
between the two sites. This is confirmed by projecting the PC scores
of both sites (cropland and grassland fields) into the component
plot. As can be seen in Fig. 3, most cropland topsoils are located

on the positive side of the axis for component 2 (PC2 scores >0)
which represents soils with higher amounts of elements originat-
ing mainly from anthropogenic sources. Grassland topsoils are also
almost uniformly distributed with respect to the axis of component
1 and show a tendency to this axis. The distinction between crop-
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Fig. 3. Projection of mean principal component scores for the two landuse patterns.
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ig. 4. Principal component analysis loading plot for the two rotated components
howing different sources for the soil variables.

and and the grassland topsoils matches the results obtained from
he execution of the discriminant analysis.

Based on earlier discussions we can classify the metal sources

nto three groups (Fig. 4): (i) Fe, Mn, Cr, Ni and Al with natural lev-
ls; (ii) Pb and Zn with moderate topsoil enrichment due to mixed
nputs from natural and anthropogenic (agrogenic) sources and (iii)
u, As and Cd with highly elevated topsoil concentrations resulting
rimarily from agricultural activities.

able 7
emivariogram models for PC1 and PC2 and their parameters.

omponent Model Nugget Sill Range

Spherical 0.0013 0.0145 8000
Exponential 0.0010 0.0139 8200
Linear 0.0031 0.0150 8521
Nugget effect 0.0020 0.0140 8540
Gaussian 0.0035 0.0150 8438

Spherical 0.328 0.374 2000
Exponential 0.310 0.361 1500
Linear 0.285 0.320 200
Nugget effect 0.328 0.327 –
Gaussian 0.325 0.370 800

egression coefficient of determination (R2) passed F test method at 0.05 significance lev
Fig. 5. (a, b) Experimental semivariogram of PC1 (a) and PC2 (b) with fitted models.

3.4. Multivariate geostatistical analysis (variography)

Variogram analysis was carried out in this study to further sub-
stantiate the results from multivariate analysis. The attributes of
the semivariogram for PC1 and PC2 data are tabulated in Table 7. It
is clear that the semivariograms parameters (model types, nugget,
sill, effective range and nugget to sill ratio) are different for the
two components. PC1 was characterized by relatively low nugget
to sill ratio (13%), long effective range (8000 m) and small nugget

effect. This factor was also well-fitted to the exponential model
(Fig. 5a) that had a relatively higher coefficient of determination and
lower residual sum of squares (R2 = 0.723, RSS = 0.4 and gof = 0.805).
The nugget to sill ratio (NSR = C0/(C0 + C)) can be regarded as cri-

(m) Nugget to sill ratio (NSR) R2 RSS gof

0.0896 0.310 0.427 0.458
0.0719 0.723 0.420 0.712
0.206 0.406 0.219 0.221
0.142 0.597 0.432 0.610
0.233 0.300 0.431 0.102

0.877 0.582 0.044 0.252
0.858 0.470 0.022 0.433
0.890 0.523 0.197 0.417
1.00 0.719 0.031 0.718
0.878 0.123 0.029 0.412

el. RSS: residual sum squares; gof: goodness-of-fit.
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erion to define the spatial dependence of soil properties. If the
atio is less than 25%, the variable has strong spatial dependence;
etween 25% and 75%, the variable has moderate spatial depen-
ence; and greater than 75%, the variable shows only weak spatial
ependence [40]. The strong spatial dependence for the PC1 indi-
ates that (Table 7) the soil variables loaded on this factor depend
ainly upon the bedrock from which the soil parent material
as derived. This is confirmed by the continuous variation in

he variable contents over a large effective range, reflecting the
ontinuity seems to be derived originally from the spatial distri-
ution of metals (elements or variables) in parent materials. As
e have already noted, Cr and Ni are typical lithogenic elements

nd are well known to be geogenically influenced. The rocks in this
egion are composed of limestone and dolomites (or their meta-

orphosed equivalents) with high concentrations of these metals
41]. The Pb–Zn mineralization in the study area can also explain
he association of these metals in the first components. There are
ignificant occurrences of Pb–Zn mineralization in the lithology of
he study area, thus the main source of these metals would origi-
ate from the lithogenic source. From our findings it is evident that
he spatial variability of heavy metals loaded in PC1 was mainly
ffected by intrinsic factors (soil formation process). It should be
oted that the first component has high loadings of clay content
about 0.8) and typical lithogenic elements (Na, Mg, Co, Fe and

n). This suggests that the parent material and subsequent pedo-
enic process are major factors in the amounts and distribution of
hese metals. This conclusion is in agreement with other studies
1,5].

As shown in Fig. 5b, the second component with high propor-
ions of Cu, K, OM and As was modelled by a pure nugget effect
R2 ≈ 1), i.e. the nugget (small scale spatial variability) was equal
o the variance of the data, indicating this component to be spatial
ndependent with purely random variance. The weak to no spatial
ependence for the second component means quite probably that
xtrinsic factors such as fertilization or other agricultural practices
ffected the spatial distribution of the elements. We must point out
hat there is very likely small scale correlation occurring at intervals
ess than the distance between sampling locations (<2000 m) that
annot be detected with this dataset. While it may be difficult to
btain reliable estimates from small sample sets, geostatistics can
e applied to undersized datasets provided caution is used during
evelopment and interpretations. From the semivariogram analy-
is presented here, it may be said that the spatial variation of soil
roperties has different patterns in the study area, reflecting that
ifferent sources of variability exist at the regional scale.

. Conclusions

The results obtained in this study increase our knowledge of
he metal contents and their possible sources in the arable soils
f the Angouran area. This study also demonstrated multivariate
ata analysis methods can provide a valid (useful) method for the
valuation of the impacts of landuse practices on soil characteristics
nd for the identification of their controlling factors in the landuse
cale.

Our study generally concludes that site-specific management
olicies such as precision agriculture (integrated into other man-
gement components of agronomic systems) need to be conducted
n the study area. These sustainable strategies can increase

rofits by maximizing yield, while simultaneously decreasing
nvironmental impacts by managing inputs (e.g. fertilization or
esticides). In this sense, the findings of this preliminary study
an also provide decision makers with the information needed to
mprove the sustainability and safety of intensive-farming activi-
ies.
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